Discover and read the best of Twitter Threads about #pythoncode

Most recents (23)

You want a career in Cyber Security and Hacking?

BUT can't afford costly courses & subscriptions

Start with πŸ’― FREE @RealTryHackMe rooms:🧡

#tryhackme #infosec #Linux #Hacked #Root #pythoncode #CyberSec #Web3 #Hacking #BugBounty #learning #100daysofpython #Security
1⃣ Level:01 Introduction

1. OpenVPN tryhackme.com/room/openvpn
2. Welcome tryhackme.com/jr/welcome
3. Intro to Researching tryhackme.com/room/introtore…
4. Crash Course Pentesting tryhackme.com/room/ccpentest…
2⃣ Introductory CTF

1. Google Dorking tryhackme.com/room/googledor…
2. OHsint tryhackme.com/room/ohsint
3. Shodan tryhackme.com/room/shodan
Read 10 tweets
πŸ”΄ Computer Vision Tutorial 4️⃣: Edge detection
🟑 Jupyter Notebook πŸ“’ in second tweet.

Check this out πŸ‘‡

#programming #MachineLearning #DataScience #pythonprogramming #CodeNewbie #pythoncode #100daysofcode #pythontricks #pythonprojects #100daysofcodechallenge #python #opencv
πŸ”΅ Find Jupyter Notebook πŸ“’ ⬇️
github.com/patchy631/twit…
Hope you enjoyed reading!! πŸ“–

Follow me if you are interested in:
βœ… Python 🐍
βœ… Machine learning πŸ€–
βœ… Computer Vision πŸŽ₯
βœ… MlOps βš’οΈ

Retweet πŸ” the first tweet πŸ₯ .
Cheers!! 🍻
Read 3 tweets
πŸ”΄ Pandas 🐼 Tutorial 3️⃣
🟑 Iterrows 🀜 πŸ€› Itertuples

Check this out πŸ‘‡

#programming #MachineLearning #DataScience #pythonprogramming #CodeNewbie #pythoncode #100daysofcode #pythontricks #pythonprojects #100daysofcodechallenge #python #Pandas
Find Jupyter Notebook πŸ“’ ⬇️
github.com/patchy631/twit…
Read 4 tweets
1/ "Software is eating the world. Machine learning is eating software. Transformers are eating machine learning."

Let's understand what these Transformers are all about

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI #DataAnalytics
2/ #Transformers architecture follows Encoder and Decoder structure.

The encoder receives input sequence and creates intermediate representation by applying embedding and attention mechanism.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI
3/ Then, this intermediate representation or hidden state will pass through the decoder, and the decoder starts generating an output sequence.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI #DataScientist #DataAnalytics #Statistics
Read 14 tweets
But what p-value means in #MachineLearning - A thread

It tells you how likely it is that your data could have occurred under the null hypothesis

1/n

#DataScience #DeepLearning #ComputerVision #100DaysOfMLCode #Python #DataScientist #Statistics #programming #Data #Math #Stat
2/n
What Is a Null Hypothesis?

A null hypothesis is a type of statistical hypothesis that proposes that no statistical significance exists in a set of given observations.

#DataScience #MachineLearning #100DaysOfMLCode #Python #stat #Statistics #Data #AI #Math #deeplearning
3/n
A P-value is the probability of obtaining an effect at least as extreme as the one in your sample data, assuming the truth of the null hypothesis

#DataScience #MachineLearning #100DaysOfMLCode #Python #DataScientist #Statistics #Data #DataAnalytics #AI #Math
Read 11 tweets
1/ One way to test whether a time series is stationary is to perform an augmented Dickey-Fuller test - A Thread

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI #DataScientist #DataAnalytics #Statistics #programming #ArtificialIntelligence
2/ H0: The time series is non-stationary. In other words, it has some time-dependent structure and does not have constant variance over time.

HA: The time series is stationary.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI #DataScientist
3/ If the p-value from the test is less than some significance level (e.g. Ξ± = .05), then we can reject the null hypothesis and conclude that the time series is stationary.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI #DataScientist
Read 8 tweets
2/ It is important to standardize variables before running Cluster Analysis. It is because cluster analysis techniques depend on the concept of measuring the distance between the different observations we're trying to cluster.

#DataScience #MachineLearning #DeepLearning
3/ If a variable is measured at a higher scale than the other variables, then whatever measure we use will be overly influenced by that variable.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python #pythoncode #AI #DataScientist #DataAnalytics #Statistics
Read 16 tweets
2/16

"roc_auc_score" is defined as the area under the ROC curve, which is the curve having False Positive Rate on the x-axis and True Positive Rate on the y-axis at all classification thresholds.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python
Read 16 tweets
2/n

Alibi Detect is a Python library for detecting outliers, adversarial data, and drift. Accommodates tabular data, text, images, and time series that can be used both online and offline. Both TensorFlow and PyTorch backends are supported

#DataScience #DeepLearning
3/n

Supports a variety of outlier detection techniques, including Mahalanobis distance, Isolation forest, and Seq2seq

#DataScience #DeepLearning #MachineLearning #ComputerVision #100DaysOfMLCode #Python #DataScientist #Statistics #programming #Data #Math #Stat #pythoncode
Read 10 tweets
1/ Can you classify something without seeing it before - that's what Zero-Shot Learning is all about - A Thread

πŸ‘‰ One of the popular methods for zero-shot learning is Natural Language Inference (NLI).

#DataScience #DeepLearning #MachineLearning #100DaysOfMLCode #Pytho
3/ In Zero-shot classification, we ask the model to classify a sentence to one of the classes (label) that the model hasn't seen during training.

#DataScience #MachineLearning #100DaysOfMLCode #DataScientist #Statistics #programming #ArtificialIntelligence #Data #pythoncode #AI
Read 13 tweets
1/ Why do we need the bias term in ML algorithms such as linear regression and neural networks ? - A thread

#DataScience #MachineLearning #100DaysOfMLCode #DataScientist #Statistics #programming #ArtificialIntelligence #Data #pythoncode #AI #Stats #DeepLearning #100DaysOfCode Image
2/ In linear regression, without the bias term your solution has to go through the origin. That is, when all of your features are zero, your predicted value would also have to be zero.

#DataScience #MachineLearning #100DaysOfMLCode #DataScientist #Statistics #programming Image
Read 7 tweets
Google has released Imagen: a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding

#Python3 #MachineLearning #DataScience #100DaysOfCode #DataScience #DataAnalytics #100DaysOfMLCode #DataScientist #Statistics Image
Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation.

#Python3 #MachineLearning #DataScience #100DaysOfCode #DataScience #DataAnalytics #100DaysOfMLCode
This generator is scarily accurate with super-resolution! "A photo of a raccoon wearing an astronaut helmet, looking out of the window at night."

#Python3 #MachineLearning #DataScience #100DaysOfCode #DataScience #DataAnalytics #100DaysOfMLCode #DataScientist #Statistics Image
Read 4 tweets
What is p-value - A thread

It tells you how likely it is that your data could have occurred under the null hypothesis.

1/n

#DataScience #DeepLearning #MachineLearning #ComputerVision #100DaysOfMLCode #Python #DataScientist #Statistics #programming #Data #Math #Stat Image
2/n
What Is a Null Hypothesis?

A null hypothesis is a type of statistical hypothesis that proposes that no statistical significance exists in a set of given observations.

#DataScience #MachineLearning #100DaysOfMLCode #Python #stat #Statistics #Data #AI #Math #deeplearning
3/n
A P-value is the probability of obtaining an effect at least as extreme as the one in your sample data, assuming the truth of the null hypothesis

#DataScience #MachineLearning #100DaysOfMLCode #Python #DataScientist #Statistics #Data #DataAnalytics #AI #Math
Read 10 tweets
1/ #MachineLearning #Interview questsion -
Why L1 regularizations causes parameter sparsity whereas L2 regularization does not?

#DataScience #MachineLearning #100DaysOfMLCode #DataScientist #Statistics #programming #ArtificialIntelligence #Data #pythoncode #AI #Stats
2/ L1 & L2 regularization add constraints to the optimization problem. The curve H0 is the hypothesis. The solution to this system is the set of points where the H0 meets the constraints.

#DataScience #MachineLearning #100DaysOfMLCode #DataScientist #Statistics #programming Image
3/ Regularizations in statistics or in the field of machine learning is used to include some extra information in order to solve a problem in a better way.

#DataScience #MachineLearning #100DaysOfMLCode #DataScientist #Statistics #programming #ArtificialIntelligence #Data
Read 7 tweets
2/16

"roc_auc_score" is defined as the area under the ROC curve, which is the curve having False Positive Rate on the x-axis and True Positive Rate on the y-axis at all classification thresholds.

#DataScience #MachineLearning #DeepLearning #100DaysOfMLCode #Python
Read 17 tweets
How to Create Small Multiple Charts in Python, with Plotly

🧡[1/23]

sharpsightlabs.com/blog/plotly-sm…

#python #datascience #pythoncode #datavisualization
[2/]

Before I get into the mechanics of how to create a small multiple charts in Python, let me quickly explain why they are so important.
[3/]

Small multiple charts are one of my favorite chart types.

They are very powerful, and also highly under-used.

#datascience #dataanalytics #datavisualization
Read 23 tweets
In Python ...

You can combine Numpy arrays vertically or horizontally using np.concatenate

#Python #pythoncode #datascience
The first argument to the function is a list (or collection) of arrays that you want to combine.

You can actually combine many arrays ...just put them inside the list.
The axis parameter controls the direction along which you combine the arrays.

For 2D arrays ...

'axis = 0' combines vertically
'axis = 1' combines horizontally
Read 6 tweets
In Matplotlib ...

You can get the RGBA representation of a color with the to_rgba() function.

#Python #pythoncode #datavisualization
You'll notice that the output of to_rgba is a tuple with four floats: (%red, %green, %blue, alpha)

#Python
In RGBA, the alpha channel represents the opacity of the color, where:

– 0.0 is fully transparent
– 1.0 is fully opaque
Read 4 tweets
In Python, you can visualize images with the Plotly IMshow function.

🧡[1/8]

sharpsightlabs.com/blog/plotly-im…

#Python #pythonlearning #datascience #datavisualization
[2/8]

You can use Plotly IMshow for a few uses.

You can use it to plot heatmaps ...

But you can also use it to plot images.
[3/8]

The syntax for Plotly IMshow is pretty simple.

You call the function as px.imshow and then provide the name of the image file you want to visualize.

(This assumes you've imported Plotly express as px)

#Python #pythoncode Image
Read 8 tweets
In Python ...

You can use the Pandas dropna method to drop rows with missing values.

#Python #pythoncode #datascience ImageImageImageImage
As seen above, you can limit dropna to specific columns with the 'subset=' parameter.

With 'subset=', you can specify the columns in which dropna will look for missing values

#Python #pythonlearning #datascience
If it finds missing values in any of those columns, it will drop the row.

But it will ignore missing values in other columns.
Read 6 tweets
In Python ...

You can use Numpy all to test conditions about the properties of a Numpy array.

#Python #pythoncode #datascience ImageImageImageImage
☝️

So for instance, in the example above, I test if all of the values are greater than 2, by column.

#Python
To do this, you need to know how np.all works ...

But you also need to know how to use axes.

#Python #pythonlearning
Read 5 tweets
#Learn 🧠🐍#python: Sometimes when programming in python they're situations when you want to copy the contents of an existing list into another. Python has several ways of achieving that. In this thread you will learn different ways of achieving that with the help of examples. Image
1) Using the equal (=) sign operator:
Using = operator you can copy the contents of an existing list onto another/new list. But there's a problem with this method which I will explain on the next section. Image
The problem with the above method is that if you modify the new copied_fruits list the original list (fruits) is modified too, this is because the copied list (copied_fruits) is referencing/ pointing to same fruits list in memory.
Read 17 tweets

Related hashtags

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3.00/month or $30.00/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!